EconPapers    
Economics at your fingertips  
 

Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients

Z.E. Musielak, D. Roy and L.D. Swift

Chaos, Solitons & Fractals, 2008, vol. 38, issue 3, 894-902

Abstract: A general method is developed to derive a Lagrangian and Hamiltonian for a nonlinear system with a quadratic first-order time derivative term and coefficients varying in the space coordinates. The method is based on variable transformations that allow removing the quadratic term and writing the equation of motion in standard form. Based on this form, an auxiliary Lagrangian for the transformed variables is derived and used to obtain the Lagrangian and Hamiltonian for the original variables. An interesting result is that the obtained Lagrangian and Hamiltonian can be non-local quantities, which do not diverge as the system evolves in time. Applications of the method to several systems with different coefficients shows that the method may become an important tool in studying nonlinear dynamical systems with a quadratic velocity term.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004699
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:3:p:894-902

DOI: 10.1016/j.chaos.2007.06.076

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:38:y:2008:i:3:p:894-902