Impulsive effects on global asymptotic stability of delay BAM neural networks
Jun Chen and
Baotong Cui
Chaos, Solitons & Fractals, 2008, vol. 38, issue 4, 1115-1125
Abstract:
Based on the proper Lyapunov functions and the Jacobsthal liner inequality, some sufficient conditions are presented in this paper for global asymptotic stability of delay bidirectional associative memory neural networks with impulses. The obtained results are independently of the delay parameters and can be easily verified. Also, some remarks and an illustrative example are given to demonstrate the effectiveness of the obtained results.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907000641
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:4:p:1115-1125
DOI: 10.1016/j.chaos.2007.01.042
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().