Effect of noise on fractal structure
Demitre Serletis
Chaos, Solitons & Fractals, 2008, vol. 38, issue 4, 921-924
Abstract:
In this paper, I investigate the effect of dynamical noise on the estimation of the Hurst exponent and the fractal dimension of time series. Recently, Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on estimation of Lyapunov exponents from a time series. Chaos, Solitons & Fractals, forthcoming] have shown that dynamical noise can make the detection of chaotic dynamics very difficult, and Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on the bifurcation behavior of dynamical systems. Chaos, Solitons & Fractals, forthcoming] have shown that dynamical noise can also shift bifurcation points and produce noise-induced transitions, making the determination of bifurcation boundaries difficult. Here I apply the detrending moving average (DMA) method, recently developed by Alessio et al. [Alessio E, Carbone A, Castelli G, Frappietro V. Second-order moving average and scaling of stochastic time series. The Eur Phys J B 2002;27:197–200] and Carbone et al. [Carbone A, Castelli G, Stanley HE. Time-dependent Hurst exponent in financial time series. Physica A 2004;344:267–71; Carbone A, Castelli G, Stanley HE. Analysis of clusters formed by the moving average of a long-range correlated time series. Phys Rev E 2004;69:026105], to estimate the Hurst exponent of a Brownian walk with a Hurst exponent of 0.5, coupled with low and high intensity noise, and show that dynamical noise has no effect on fractal structure.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907000562
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:4:p:921-924
DOI: 10.1016/j.chaos.2007.01.031
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().