Mean square exponential stability and periodic solutions of stochastic delay cellular neural networks
Jun-Xiang Lu and
Yichen Ma
Chaos, Solitons & Fractals, 2008, vol. 38, issue 5, 1323-1331
Abstract:
This paper mainely concerns the exponential stability analysis and the existence of periodic solution problems for a class of stochastic cellular neural networks with discrete delays (SDCNNs). Above all, Poincare contraction theory is utilized to derive the conditions guaranteeing the existence of periodic solutions of SDCNNs. Next, Lyapunov function, stochastic analysis theory and Young inequality approach is developed to derive some theorems which gives several sufficient conditions such that periodic solutions of SDCNNs are mean square exponential stable. These sufficient conditions only including those governing parameters of SDCNNs can be easily checked by simple algebraic methods. Finally, two examples are given to demonstrate that the proposed criteria are useful and effective.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907006650
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:38:y:2008:i:5:p:1323-1331
DOI: 10.1016/j.chaos.2007.08.053
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().