A simple but efficient approach for studying on nonlinear differential-difference equations
Cheng-Lin Bai and
Ying Li
Chaos, Solitons & Fractals, 2009, vol. 39, issue 1, 130-135
Abstract:
In this paper, we present a new approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs). By applying the new method, we have studied the saturable discrete nonlinear Schrodinger equation (SDNLSE) and obtained a number of new exact localized solutions, including discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution and alternating phase bright and dark soliton solution, provided that a special relation is bound on the coefficients of the equation among the solutions obtained.
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907002469
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:1:p:130-135
DOI: 10.1016/j.chaos.2007.01.121
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().