EconPapers    
Economics at your fingertips  
 

Improved asymptotic stability analysis for uncertain delayed state neural networks

Fernando O. Souza, Reinaldo M. Palhares and Petr Ya. Ekel

Chaos, Solitons & Fractals, 2009, vol. 39, issue 1, 240-247

Abstract: This paper presents a new linear matrix inequality (LMI) based approach to the stability analysis of artificial neural networks (ANN) subject to time-delay and polytope-bounded uncertainties in the parameters. The main objective is to propose a less conservative condition to the stability analysis using the Gu’s discretized Lyapunov–Krasovskii functional theory and an alternative strategy to introduce slack matrices. Two computer simulations examples are performed to support the theoretical predictions. Particularly, in the first example, the Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability. The second example is presented to illustrate how the proposed approach can provide better stability performance when compared to other ones in the literature.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907002330
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:1:p:240-247

DOI: 10.1016/j.chaos.2007.01.110

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:1:p:240-247