EconPapers    
Economics at your fingertips  
 

Global exponential stability of a class of retarded impulsive differential equations with applications

Yonghui Xia and Patricia J.Y. Wong

Chaos, Solitons & Fractals, 2009, vol. 39, issue 1, 440-453

Abstract: This paper studies the dynamics of a class of retarded impulsive differential equations (IDE), which generalizes the delayed cellular neural networks (DCNN), delayed bidirectional associative memory (BAM) neural networks and some population growth models. Some sufficient criteria are obtained for the existence and global exponential stability of a unique equilibrium. When the impulsive jumps are absent, our results reduce to its corresponding results for the non-impulsive systems. The approaches are based on Banach’s fixed point theorem, matrix theory and its spectral theory. Due to this method, our results generalize and improve many previous known results such as [3,5,6,9,17,18,23,32,38,43,51,52]. Some examples are also included to illustrate the feasibility and effectiveness of the results obtained.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907003128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:1:p:440-453

DOI: 10.1016/j.chaos.2007.04.005

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:1:p:440-453