EconPapers    
Economics at your fingertips  
 

Non-chaotic behaviour for a class of quadratic jerk equations

J.-M. Malasoma

Chaos, Solitons & Fractals, 2009, vol. 39, issue 2, 533-539

Abstract: It is shown that a class constituted by 27 different types of non-linear third-order differential equations of the form x⃛=j(x,x˙,x¨), where j is a quadratic polynomial with only one or two terms, and for which ∂j(x,y,z)/∂z is not a constant function of time, does not exhibit chaos. The three-dimensional dynamical systems associated to these equations are not necessarily dissipative everywhere nor conservative everywhere in the corresponding phase spaces. Our results include and improve some recent results obtained by Yang and Chen who only considered the case where j was a homogeneous quadratic polynomial with two terms.

Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907001981
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:2:p:533-539

DOI: 10.1016/j.chaos.2007.01.109

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:533-539