EconPapers    
Economics at your fingertips  
 

Numerical stability of chaotic synchronization using a nonlinear coupling function

G.H. Erjaee

Chaos, Solitons & Fractals, 2009, vol. 39, issue 2, 682-688

Abstract: Nonlinear coupling has been used to synchronize some chaotic systems. The difference evolutional equation between coupled systems, determined via the linear approximation, can be used to analyze the stability of the synchronization between drive and response systems. According to the stability criteria the coupled chaotic systems are asymptotically synchronized, if all eigenvalues of the matrix found in this linear approximation have negative real parts. There is no synchronization, if at least one of these eigenvalues has positive real part. Nevertheless, in this paper we have considered some cases on which there is at least one zero eigenvalue for the matrix in the linear approximation. Such cases demonstrate synchronization-like behavior between coupled chaotic systems if all other eigenvalues have negative real parts.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907001865
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:2:p:682-688

DOI: 10.1016/j.chaos.2007.01.088

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:682-688