EconPapers    
Economics at your fingertips  
 

Transiently chaotic neural networks with piecewise linear output functions

Shyan-Shiou Chen and Chih-Wen Shih

Chaos, Solitons & Fractals, 2009, vol. 39, issue 2, 717-730

Abstract: Admitting both transient chaotic phase and convergent phase, the transiently chaotic neural network (TCNN) provides superior performance than the classical networks in solving combinatorial optimization problems. We derive concrete parameter conditions for these two essential dynamic phases of the TCNN with piecewise linear output function. The confirmation for chaotic dynamics of the system results from a successful application of the Marotto theorem which was recently clarified. Numerical simulation on applying the TCNN with piecewise linear output function is carried out to find the optimal solution of a travelling salesman problem. It is demonstrated that the performance is even better than the previous TCNN model with logistic output function.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907001816
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:2:p:717-730

DOI: 10.1016/j.chaos.2007.01.103

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:717-730