EconPapers    
Economics at your fingertips  
 

Bifurcation and synchronization of synaptically coupled FHN models with time delay

Qingyun Wang, Qishao Lu, GuanRong Chen, Zhaosheng Feng and LiXia Duan

Chaos, Solitons & Fractals, 2009, vol. 39, issue 2, 918-925

Abstract: This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.

Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907001580
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:2:p:918-925

DOI: 10.1016/j.chaos.2007.01.061

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:918-925