Trilinearization and localized coherent structures and periodic solutions for the (2+1) dimensional K-dV and NNV equations
C. Senthil Kumar,
R. Radha and
M. Lakshmanan
Chaos, Solitons & Fractals, 2009, vol. 39, issue 2, 942-955
Abstract:
In this paper, using a novel approach involving the truncated Laurent expansion in the Painlevé analysis of the (2+1) dimensional K-dV equation, we have trilinearized the evolution equation and obtained rather general classes of solutions in terms of arbitrary functions. The highlight of this method is that it allows us to construct generalized periodic structures corresponding to different manifolds in terms of Jacobian elliptic functions, and the exponentially decaying dromions turn out to be special cases of these solutions. We have also constructed multi-elliptic function solutions and multi-dromions and analysed their interactions. The analysis is also extended to the case of generalized Nizhnik–Novikov–Veselov (NNV) equation, which is also trilinearized and general class of solutions obtained.
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907001555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:2:p:942-955
DOI: 10.1016/j.chaos.2007.01.066
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().