EconPapers    
Economics at your fingertips  
 

On k-Fibonacci sequences and polynomials and their derivatives

Sergio Falcón and Ángel Plaza

Chaos, Solitons & Fractals, 2009, vol. 39, issue 3, 1005-1019

Abstract: The k-Fibonacci polynomials are the natural extension of the k-Fibonacci numbers and many of their properties admit a straightforward proof. Here in particular, we present the derivatives of these polynomials in the form of convolution of k-Fibonacci polynomials. This fact allows us to present in an easy form a family of integer sequences in a new and direct way. Many relations for the derivatives of Fibonacci polynomials are proven.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907002810
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:3:p:1005-1019

DOI: 10.1016/j.chaos.2007.03.007

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1005-1019