Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh–Duffing oscillator
M. Siewe Siewe,
Hongjun Cao and
Miguel A.F. Sanjuán
Chaos, Solitons & Fractals, 2009, vol. 39, issue 3, 1092-1099
Abstract:
The Rayleigh oscillator is one canonical example of self-excited systems. However, simple generalizations of such systems, such as the Rayleigh–Duffing oscillator, have not received much attention. The presence of a cubic term makes the Rayleigh–Duffing oscillator a more complex and interesting case to analyze. In this work, we use analytical techniques such as the Melnikov theory, to obtain the threshold condition for the occurrence of Smale-horseshoe type chaos in the Rayleigh–Duffing oscillator. Moreover, we examine carefully the phase space of initial conditions in order to analyze the effect of the nonlinear damping, and in particular how the basin boundaries become fractalized.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790700344X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:3:p:1092-1099
DOI: 10.1016/j.chaos.2007.05.007
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().