EconPapers    
Economics at your fingertips  
 

Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh–Duffing oscillator

M. Siewe Siewe, Hongjun Cao and Miguel A.F. Sanjuán

Chaos, Solitons & Fractals, 2009, vol. 39, issue 3, 1092-1099

Abstract: The Rayleigh oscillator is one canonical example of self-excited systems. However, simple generalizations of such systems, such as the Rayleigh–Duffing oscillator, have not received much attention. The presence of a cubic term makes the Rayleigh–Duffing oscillator a more complex and interesting case to analyze. In this work, we use analytical techniques such as the Melnikov theory, to obtain the threshold condition for the occurrence of Smale-horseshoe type chaos in the Rayleigh–Duffing oscillator. Moreover, we examine carefully the phase space of initial conditions in order to analyze the effect of the nonlinear damping, and in particular how the basin boundaries become fractalized.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790700344X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:3:p:1092-1099

DOI: 10.1016/j.chaos.2007.05.007

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1092-1099