A topological approach to the existence of solutions for nonlinear differential equations with piecewise constant argument
Zhenkun Huang,
Xinghua Wang and
Yonghui Xia
Chaos, Solitons & Fractals, 2009, vol. 39, issue 3, 1121-1131
Abstract:
In this paper, we investigate qualitative behavior of nonlinear differential equations with piecewise constant argument (PCA). A topological approach of Ważewski-type which gives sufficient conditions to guarantee that the graph of at least one solution stays in a given domain is formulated. Moreover, our results are also suitable for a class of general system of discrete equations. By using a regular polyfacial set, we apply our developed topological approach to cellular neural networks (CNNs) with PCA. Some new results are attained to reveal dynamic behavior of CNNs with PCA and discrete-time CNNs. Finally, an illustrative example of CNNs with PCA shows usefulness and effectiveness of our results.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907003347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:3:p:1121-1131
DOI: 10.1016/j.chaos.2007.04.029
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().