Multifractal rainfall extremes: Theoretical analysis and practical estimation
Andreas Langousis,
Daniele Veneziano,
Pierluigi Furcolo and
Chiara Lepore
Chaos, Solitons & Fractals, 2009, vol. 39, issue 3, 1182-1194
Abstract:
We study the extremes generated by a multifractal model of temporal rainfall and propose a practical method to estimate the Intensity–Duration–Frequency (IDF) curves. The model assumes that rainfall is a sequence of independent and identically distributed multiplicative cascades of the beta-lognormal type, with common duration D. When properly fitted to data, this simple model was found to produce accurate IDF results [Langousis A, Veneziano D. Intensity–duration–frequency curves from scaling representations of rainfall. Water Resour Res 2007;43. doi:10.1029/2006WR005245]. Previous studies also showed that the IDF values from multifractal representations of rainfall scale with duration d and return period T under either d→0 or T→∞, with different scaling exponents in the two cases. We determine the regions of the (d,T)-plane in which each asymptotic scaling behavior applies in good approximation, find expressions for the IDF values in the scaling and non-scaling regimes, and quantify the bias when estimating the asymptotic power-law tail of rainfall intensity from finite-duration records, as was often done in the past. Numerically calculated exact IDF curves are compared to several analytic approximations. The approximations are found to be accurate and are used to propose a practical IDF estimation procedure.
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907003700
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:3:p:1182-1194
DOI: 10.1016/j.chaos.2007.06.004
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().