Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host
Lili Zhu and
Min Zhao
Chaos, Solitons & Fractals, 2009, vol. 39, issue 3, 1259-1269
Abstract:
This paper investigates a discrete-time host–parasitoid ecological model with Hassell growth function for the host by qualitative analysis and numerical simulation. Local stability analysis of the system is carried out. Many forms of complex dynamics are observed, including chaotic bands with periodic windows, pitchfork and tangent bifurcations, attractor crises, intermittency, supertransients, and non-unique dynamics (meaning that several attractors coexist). The largest Lyapunov exponents are numerically computed to confirm further the complexity of these dynamic behaviors.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790700896X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:3:p:1259-1269
DOI: 10.1016/j.chaos.2007.10.023
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().