Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system
Damei Li,
Xiaoqun Wu and
Jun-an Lu
Chaos, Solitons & Fractals, 2009, vol. 39, issue 3, 1290-1296
Abstract:
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. In this paper, we attempt to investigate the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system using a technique combining the generalized Lyapunov function theory and optimization. For the Lorenz–Haken system, we derive a four-dimensional ellipsoidal ultimate bound and positively invariant set. Furthermore, the two-dimensional parabolic ultimate bound with respect to x–z is established. Finally, numerical results to estimate the ultimate bound are also presented for verification. The results obtained in this paper are important and useful in control, synchronization of hyperchaos and their applications.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:3:p:1290-1296
DOI: 10.1016/j.chaos.2007.06.038
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().