Novel results for global robust stability of delayed neural networks
Eylem Yucel and
Sabri Arik
Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1604-1614
Abstract:
This paper investigates the global robust convergence properties of continuous-time neural networks with discrete time delays. By employing suitable Lyapunov functionals, some sufficient conditions for the existence, uniqueness and global robust asymptotic stability of the equilibrium point are derived. The conditions can be easily verified as they can be expressed in terms of the network parameters only. Some numerical examples are also given to compare our results with previous robust stability results derived in the literature.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004304
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1604-1614
DOI: 10.1016/j.chaos.2007.06.052
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().