Investigation of relation between singular points and number of limit cycles for a rotor–AMBs system
J. Li,
Y. Tian and
W. Zhang
Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1627-1640
Abstract:
The relation between singular points and the number of limit cycles is investigated for a rotor-active magnetic bearings system with time-varying stiffness and single-degree-of-freedom. The averaged equation of the system is a perturbed polynomial Hamiltonian system of degree 5. The dynamic characteristics of the unperturbed system are first analyzed for a certain parameter group. The number of limit cycles and their configurations of the perturbed system under eight different parametric groups are obtained and the influence of eight control conditions on the number of limit cycles is studied. The results obtained here will play an important leading role in the study of the properties of nonlinear dynamics and control of the rotor-active magnetic bearings system with time-varying stiffness.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004158
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1627-1640
DOI: 10.1016/j.chaos.2007.06.044
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().