On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin–Huxley (HH) mathematical model
Fábio Roberto Chavarette,
José Manoel Balthazar,
Marat Rafikov and
Helder Aníbal Hermini
Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1651-1666
Abstract:
In this paper, we have studied the plasmatic membrane behavior using an electric circuit developed by Hodgkin and Huxley in 1952 and have dealt with the variation of the amount of time related to the potassium and sodium conductances in the squid axon. They developed differential equations for the propagation of electric signals; the dynamics of the Hodgkin–Huxley model have been extensively studied both from the view point of its their biological implications and as a test bed for numerical methods, which can be applied to more complex models. Recently, an irregular chaotic movement of the action potential of the membrane was observed for a number of techniques of control with the objective to stabilize the variation of this potential. This paper analyzes the non-linear dynamics of the Hodgkin–Huxley mathematical model, and we present some modifications in the governing equations of the system in order to make it a non-ideal one (taking into account that the energy source has a limited power supply). We also developed an optimal linear control design for the action potential of membranes. Here, we discuss the conditions that allow the use of control linear feedback for this kind of non-linear system.
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907003906
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1651-1666
DOI: 10.1016/j.chaos.2007.06.016
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().