Using chaos to reduce oscillations: Experimental results
A. Dąbrowski and
T. Kapitaniak
Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1677-1683
Abstract:
Chaotic dynamic systems are usually controlled in a way, which allows the replacement of chaotic behavior by the desired periodic motion. We give the example in which an originally regular (periodic) system is controlled in such a way as to make it chaotic. This approach based on the idea of dynamical absorber allows the significant reduction of the amplitude of the oscillations in the neighborhood of the resonance. We present experimental results, which confirm our previous numerical studies [Dąbrowski A, Kapitaniak T. Using chaos to reduce oscillations. Nonlinear Phenomen Complex Syst 2001;4(2):206–11].
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004857
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1677-1683
DOI: 10.1016/j.chaos.2007.06.126
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().