Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method
Fathi M. Allan
Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1744-1752
Abstract:
Based on a new kind of analytic method, namely the Homotopy analysis method, an analytic approach to solve non-linear, chaotic system of ordinary differential equations is presented. The method is applied to Lorenz system; this system depends on the three parameters: σ, b and the so-called bifurcation parameter R are real constants. Two cases are considered. The first case is when R=20.5 which corresponds to the transition region and the second case corresponds to R=23.5 which corresponds to the chaotic region.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004341
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1744-1752
DOI: 10.1016/j.chaos.2007.06.116
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().