Wavelet based correlation coefficient of time series of Saudi Meteorological Data
S. Rehman and
A.H. Siddiqi
Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1764-1789
Abstract:
In this paper, wavelet concepts are used to study a correlation between pairs of time series of meteorological parameters such as pressure, temperature, rainfall, relative humidity and wind speed. The study utilized the daily average values of meteorological parameters of nine meteorological stations of Saudi Arabia located at different strategic locations. The data used in this study cover a period of 16 years between 1990 and 2005. Besides obtaining wavelet spectra, we also computed the wavelet correlation coefficients between two same parameters from two different locations and show that strong correlation or strong anti-correlation depends on scale. The cross-correlation coefficients of meteorological parameters between two stations were also calculated using statistical function. For coastal to costal pair of stations, pressure time series was found to be strongly correlated. In general, the temperature data were found to be strongly correlated for all pairs of stations and the rainfall data the least.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004328
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1764-1789
DOI: 10.1016/j.chaos.2007.06.054
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().