EconPapers    
Economics at your fingertips  
 

Complex dynamics in a two-dimensional noninvertible map

Yinghui Gao

Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1798-1810

Abstract: A two-dimensional noninvertible map is investigated. The conditions of existence for pitchfork bifurcation, flip bifurcation and Naimark–Sacker bifurcation are derived by using center manifold theorem and bifurcation theory. Chaotic behavior in the sense of Marotto’s definition of chaos is proven. And numerical simulations not only show the consistence with the theoretical analysis but also exhibit the complex dynamical behaviors, including period-34, period-5 orbits, quasi-period orbits, intermittency, boundary crisis as well as chaotic transient. The computation of Lyapunov exponents conforms the dynamical behaviors.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004298
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1798-1810

DOI: 10.1016/j.chaos.2007.06.051

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:4:p:1798-1810