Study on chaos control of second-order non-autonomous phase-locked loop based on state observer
Yi-Bo Zhao,
Du-Qu Wei and
Xiao-Shu Luo
Chaos, Solitons & Fractals, 2009, vol. 39, issue 4, 1817-1822
Abstract:
With system parameters falling into a certain area, the second-order non-autonomous phase locked loop (PLL) is experiencing chaotic behavior which is undesirable in system, where it is necessary to estimate the phase of a received signal. In order to control chaos in PLL and drive it to the locked state, dynamical equation for phase error model of PLL is firstly derived. Then, the state values of phase and transient frequency errors were estimated by a state observer. Moreover, by exploiting these state estimations, a non-linear feedback controller is designed. Since the presented controller does not need to change the controlled system structure and not to use any information of system except the system state variables, the designed controller is simple and desirable. Simulation results show that the presented control law is very effective.
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004262
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:4:p:1817-1822
DOI: 10.1016/j.chaos.2007.06.050
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().