EconPapers    
Economics at your fingertips  
 

Differential evolution algorithm-based parameter estimation for chaotic systems

Bo Peng, Bo Liu, Fu-Yi Zhang and Ling Wang

Chaos, Solitons & Fractals, 2009, vol. 39, issue 5, 2110-2118

Abstract: Parameter estimation for chaotic systems is an important issue in nonlinear science and has attracted increasing interests from various research fields, which could be essentially formulated as a multidimensional optimization problem. As a novel evolutionary computation technique, differential evolution algorithm (DE) has attracted much attention and wide applications, owing to its simple concept, easy implementation and quick convergence. However, to the best of our knowledge, there is no published work on DE for estimating parameters of chaotic systems. In this paper, a DE approach is applied to estimate the parameters of Lorenz system. Numerical simulation and the comparisons demonstrate the effectiveness and robustness of DE. Moreover, the effect of population size on the optimization performances is investigated as well.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004390
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:5:p:2110-2118

DOI: 10.1016/j.chaos.2007.06.084

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2110-2118