EconPapers    
Economics at your fingertips  
 

Coupled-expanding maps and one-sided symbolic dynamical systems

Yuming Shi, Hyonhui Ju and Guanrong Chen

Chaos, Solitons & Fractals, 2009, vol. 39, issue 5, 2138-2149

Abstract: This paper studies relationships between coupled-expanding maps and one-sided symbolic dynamical systems. The concept of coupled-expanding map is extended to a more general one: coupled-expansion for a transitive matrix. It is found that the subshift for a transitive matrix is strictly coupled-expanding for the matrix in certain disjoint compact subsets; the topological conjugacy of a continuous map in its compact invariant set of a metric space to a subshift for a transitive matrix has a close relationship with that the map is strictly coupled-expanding for the matrix in some disjoint compact subsets. A certain relationship between strictly coupled-expanding maps for a transitive matrix in disjoint bounded and closed subsets of a complete metric space and their topological conjugacy to the subshift for the matrix is also obtained. Dynamical behaviors of subshifts for irreducible matrices are then studied and several equivalent statements to chaos are obtained; especially, chaos in the sense of Li–Yorke is equivalent to chaos in the sense of Devaney for the subshift, and is also equivalent to that the domain of the subshift is infinite. Based on these results, several new criteria of chaos for maps are finally established via strict coupled-expansions for irreducible transitive matrices in compact subsets of metric spaces and in bounded and closed subsets of complete metric spaces, respectively, where their conditions are weaker than those existing in the literature.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004808
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:5:p:2138-2149

DOI: 10.1016/j.chaos.2007.06.090

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:39:y:2009:i:5:p:2138-2149