A study on the complexity of a business cycle model with great excitements in non-resonant condition
Junhai Ma,
Yaqiang Cui and
Liulixia,
Chaos, Solitons & Fractals, 2009, vol. 39, issue 5, 2258-2267
Abstract:
Based on the researches of Szydlowski and Krawiec, we studied the inherent complexity of a chaotic business cycle with great excitements in non-resonant condition. First, we got the first-order and second-order approximate solutions of the system by using multiple scale method. Then deduced the formulation reflecting the complex relations between vibration, phase, bifurcation parameter μ and excite frequency Ω of first-order solution. As the great excitement F varied, the global changes of the system solutions were analyzed. We also explored the different paths leading the systems with different parameter combinations into catastrophe region, fuzzy region or chaos region. Finally, we discussed the evolution trends of business cycle models under the above-mentioned conditions. Hence, this paper has some theoretical and practical significance.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907004900
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:5:p:2258-2267
DOI: 10.1016/j.chaos.2007.06.098
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().