Chaos control and synchronization for a special generalized Lorenz canonical system – The SM system
Xiaoxin Liao,
F. Xu,
P. Wang and
Pei Yu
Chaos, Solitons & Fractals, 2009, vol. 39, issue 5, 2491-2508
Abstract:
This paper presents some simple feedback control laws to study global stabilization and global synchronization for a special chaotic system described in the generalized Lorenz canonical form (GLCF) when τ=−1 (which, for convenience, we call Shimizu–Morioka system, or simply SM system). For an arbitrarily given equilibrium point, a simple feedback controller is designed to globally, exponentially stabilize the system, and reach globally exponent synchronization for two such systems. Based on the system’s coefficients and the structure of the system, simple feedback control laws and corresponding Lyapunov functions are constructed. Because all conditions are obtained explicitly in terms of algebraic expressions, they are easy to be implemented and applied to real problems. Numerical simulation results are presented to verify the theoretical predictions.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907005462
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:39:y:2009:i:5:p:2491-2508
DOI: 10.1016/j.chaos.2007.07.029
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().