Investigation on evolutionary optimization of chaos control
Ivan Zelinka,
Roman Senkerik and
Eduard Navratil
Chaos, Solitons & Fractals, 2009, vol. 40, issue 1, 111-129
Abstract:
This work deals with an investigation on optimization of the feedback control of chaos based on the use of evolutionary algorithms. The main objective is to show that evolutionary algorithms are capable of optimization of chaos control. As models of deterministic chaotic systems, one-dimensional Logistic equation and two-dimensional Henon map were used. The optimizations were realized in several ways, each one for another set of parameters of evolution algorithms or separate cost functions. The evolutionary algorithm SOMA (self-organizing migrating algorithm) was used in four versions. For each version simulations were repeated several times to show and check for robustness of the applied method.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907005395
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:1:p:111-129
DOI: 10.1016/j.chaos.2007.07.045
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().