Global stability of an SIRS epidemic model with transport-related infection
Junli Liu and
Yicang Zhou
Chaos, Solitons & Fractals, 2009, vol. 40, issue 1, 145-158
Abstract:
An SIRS model is proposed to study the effect of transport-related infection. Some analytical results are given for an SIRS model. If the basic reproduction number R0γ⩽1, there only exists the disease-free equilibrium which is globally asymptotically stable. There exists an endemic equilibrium which is locally asymptotically stable if the basic reproduction number R0γ>1. Sufficient conditions are established for global asymptotic stability of the endemic equilibrium. It is shown that the disease is endemic in the sense of permanence if and only if the endemic equilibrium exists. This implies that transport-related infection on disease can make the disease endemic even if all the isolated regions are disease free.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907005437
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:1:p:145-158
DOI: 10.1016/j.chaos.2007.07.047
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().