EconPapers    
Economics at your fingertips  
 

Quadratic programming with fuzzy parameters: A membership function approach

Shiang-Tai Liu

Chaos, Solitons & Fractals, 2009, vol. 40, issue 1, 237-245

Abstract: Quadratic programming has been widely applied to solving real world problems. The conventional quadratic programming model requires the parameters to be known constants. In the real world, however, the parameters are seldom known exactly and have to be estimated. This paper discusses the fuzzy quadratic programming problems where the cost coefficients, constraint coefficients, and right-hand sides are represented by convex fuzzy numbers. Since the parameters in the program are fuzzy numbers, the derived objective value is a fuzzy number as well. Using Zadeh’s extension principle, a pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. An example illustrates method proposed in this paper.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790700567X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:1:p:237-245

DOI: 10.1016/j.chaos.2007.07.054

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:237-245