Spatiotemporal structure of pulsating solitons in the cubic–quintic Ginzburg–Landau equation: A novel variational formulation
Stefan C. Mancas and
S. Roy Choudhury
Chaos, Solitons & Fractals, 2009, vol. 40, issue 1, 91-105
Abstract:
Comprehensive numerical simulations (reviewed in Dissipative Solitons, Akhmediev and Ankiewicz (Eds.), Springer, Berlin, 2005) of pulse solutions of the cubic–quintic Ginzburg–Landau Equation (CGLE), a canonical equation governing the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines, reveal various intriguing and entirely novel classes of solutions. In particular, there are five new classes of pulse or solitary waves solutions, viz. pulsating, creeping, snake, erupting, and chaotic solitons. In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. The numerical simulations also reveal very interesting bifurcations sequences of these pulses as the parameters of the CGLE are varied.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907005371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:1:p:91-105
DOI: 10.1016/j.chaos.2007.07.046
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().