Bifurcation analysis in delayed feedback Jerk systems and application of chaotic control
Baodong Zheng and
Huifeng Zheng
Chaos, Solitons & Fractals, 2009, vol. 40, issue 3, 1190-1206
Abstract:
Jerk systems with delayed feedback are considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associated characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, the stability and direction of the Hopf bifurcation are determined by applying the normal form method and center manifold theorem. Finally, the application to chaotic control is investigated, and some numerical simulations are carried out to illustrate the obtained results.
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790700714X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:3:p:1190-1206
DOI: 10.1016/j.chaos.2007.08.074
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().