Robust synchronization control of coupled chaotic neurons under external electrical stimulation
Yan-Qiu Che,
Jiang Wang,
Si-Si Zhou and
Bin Deng
Chaos, Solitons & Fractals, 2009, vol. 40, issue 3, 1333-1342
Abstract:
In this paper, a robust adaptive neural network (NN) controller is proposed to realize the synchronization of two gap junction coupled chaotic FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. Based on the Lyapunov stability theory, we derive the update laws of NN for approximating the nonlinear uncertain functions of the error dynamical system. The control scheme is robust to the uncertainties such as approximate error, ionic channel noise and external disturbances. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907007357
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:3:p:1333-1342
DOI: 10.1016/j.chaos.2007.09.014
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().