A multiparameter chaos control method based on OGY approach
Aline Souza de Paula and
Marcelo Amorim Savi
Chaos, Solitons & Fractals, 2009, vol. 40, issue 3, 1376-1390
Abstract:
Chaos control is based on the richness of responses of chaotic behavior and may be understood as the use of tiny perturbations for the stabilization of a UPO embedded in a chaotic attractor. Since one of these UPO can provide better performance than others in a particular situation the use of chaos control can make this kind of behavior to be desirable in a variety of applications. The OGY method is a discrete technique that considers small perturbations promoted in the neighborhood of the desired orbit when the trajectory crosses a specific surface, such as a Poincaré section. This contribution proposes a multiparameter semi-continuous method based on OGY approach in order to control chaotic behavior. Two different approaches are possible with this method: coupled approach, where all control parameters influences system dynamics although they are not active; and uncoupled approach that is a particular case where control parameters return to the reference value when they become passive parameters. As an application of the general formulation, it is investigated a two-parameter actuation of a nonlinear pendulum control employing coupled and uncoupled approaches. Analyses are carried out considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show that the procedure can be a good alternative for chaos control since it provides a more effective UPO stabilization than the classical single-parameter approach.
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907007564
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:3:p:1376-1390
DOI: 10.1016/j.chaos.2007.09.056
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().