Chaos embedded particle swarm optimization algorithms
Bilal Alatas,
Erhan Akin and
A. Bedri Ozer
Chaos, Solitons & Fractals, 2009, vol. 40, issue 4, 1715-1734
Abstract:
This paper proposes new particle swarm optimization (PSO) methods that use chaotic maps for parameter adaptation. This has been done by using of chaotic number generators each time a random number is needed by the classical PSO algorithm. Twelve chaos-embedded PSO methods have been proposed and eight chaotic maps have been analyzed in the benchmark functions. It has been detected that coupling emergent results in different areas, like those of PSO and complex dynamics, can improve the quality of results in some optimization problems. It has been also shown that, some of the proposed methods have somewhat increased the solution quality, that is in some cases they improved the global searching capability by escaping the local solutions.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790700803X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:4:p:1715-1734
DOI: 10.1016/j.chaos.2007.09.063
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().