Adaptive set-point tracking of the Lorenz chaotic system using non-linear feedback
F. Haghighatdar and
M. Ataei
Chaos, Solitons & Fractals, 2009, vol. 40, issue 4, 1938-1945
Abstract:
In this paper, an adaptive control method for set-point tracking of the Lorenz chaotic system by using non-linear feedback is proposed. The design procedure of the proposed controller is accomplished in two steps. At the first step, using Lyapunov’s direct method, a non-linear state feedback is selected so that without any need to apply identification techniques, in despite of the uncertain parameters existence in the system state equations, the asymptotic stability of the general Lorenz system is guaranteed in a stochastic point of the manifold containing general system equilibrium points. At the second step, a linear state feedback with adaptive gain is added to the prior controller to eliminate the tracking error. In order to guarantee the system asymptotic stability at desired set-point, the indirect Lyapunov’s method is used. Finally, to show the effectiveness of the proposed methodology, the simulation results of different experiments including system parameters changes and set-point variation are provided.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907008223
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:4:p:1938-1945
DOI: 10.1016/j.chaos.2007.09.087
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().