EconPapers    
Economics at your fingertips  
 

Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays

Li Sheng and Huizhong Yang

Chaos, Solitons & Fractals, 2009, vol. 40, issue 5, 2102-2113

Abstract: In this paper, the global robust exponential stability for a class of delayed BAM neural networks with norm-bounded uncertainty is studied. Some less conservative conditions are presented for the global exponential stability of BAM neural networks with time-varying delays by constructing a new class of Lyapunov functionals combined with free-weighting matrices. This novel approach, based on the linear matrix inequality (LMI) technique, removes some existing restrictions on the system’s parameters, and the derived conditions are easy to verify via the LMI toolbox. Comparisons between our results and previous results admit that our results establish a new set of stability criteria for delayed BAM neural networks.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907008557
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:5:p:2102-2113

DOI: 10.1016/j.chaos.2007.09.098

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:40:y:2009:i:5:p:2102-2113