EconPapers    
Economics at your fingertips  
 

On the stability of linear systems with fractional-order elements

A.G. Radwan, A.M. Soliman, A.S. Elwakil and A. Sedeek

Chaos, Solitons & Fractals, 2009, vol. 40, issue 5, 2317-2328

Abstract: Linear integer-order circuits are a narrow subset of rational-order circuits which are in turn a subset of fractional-order. Here, we study the stability of circuits having one fractional element, two fractional elements of the same order or two fractional elements of different order. A general procedure for studying the stability of a system with many fractional elements is also given. It is worth noting that a fractional element is one whose impedance in the complex frequency s-domain is proportional to sα and α is a positive or negative fractional-order. Different transformations and methods will be illustrated via examples.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907008995
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:40:y:2009:i:5:p:2317-2328

DOI: 10.1016/j.chaos.2007.10.033

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:40:y:2009:i:5:p:2317-2328