Multi-wing hyperchaotic attractors from coupled Lorenz systems
Giuseppe Grassi,
Frank L. Severance and
Damon A. Miller
Chaos, Solitons & Fractals, 2009, vol. 41, issue 1, 284-291
Abstract:
This paper illustrates an approach to generate multi-wing attractors in coupled Lorenz systems. In particular, novel four-wing (eight-wing) hyperchaotic attractors are generated by coupling two (three) identical Lorenz systems. The paper shows that the equilibria of the proposed systems have certain symmetries with respect to specific coordinate planes and the eigenvalues of the associated Jacobian matrices exhibit the property of similarity. In analogy with the original Lorenz system, where the two-wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four-wings (eight-wings) of these attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907009708
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:1:p:284-291
DOI: 10.1016/j.chaos.2007.12.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().