Global consensus for discrete-time competitive systems
Chih-Wen Shih and
Jui-Pin Tseng
Chaos, Solitons & Fractals, 2009, vol. 41, issue 1, 302-310
Abstract:
Grossberg established a remarkable convergence theorem for a class of competitive systems without knowing and using Lyapunov function for the systems. We present the parallel investigations for the discrete-time version of the Grossberg’s model. Through developing an extended component-competing analysis for the coupled system, without knowing a Lyapunov function and applying the LaSalle’s invariance principle, the global pattern formation or the so-called global consensus for the system can be achieved. A numerical simulation is performed to illustrate the present theory.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077907009824
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:1:p:302-310
DOI: 10.1016/j.chaos.2007.12.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().