Complex spin and anti-spin dynamics: A generalization of de Broglie–Bohm theory to complex space
Ciann-Dong Yang
Chaos, Solitons & Fractals, 2009, vol. 41, issue 1, 317-333
Abstract:
To be consistent with the complex spacetime formulation of the E(∞) theory, we generalize the de Broglie–Bohm (dBB) theory to a complex domain and show that the complex-extended dBB trajectories solved from the plain Schrödinger equation without any relativistic correction unambiguously demonstrate the existence of spin-1/2 dynamics in the ground-state hydrogen atom. It is the first time in the literature to reveal that to each spin solution to the Schrödinger equation, there is an accompanying anti-spin solution such that the spin and anti-spin solutions constitute a complete solution to the Schrödinger equation. The complex equations of motion indicate that the electrons in the spin and anti-spin solutions have equal angular momentum ℏ/2 anti-parallel to each other.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908000027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:1:p:317-333
DOI: 10.1016/j.chaos.2008.01.016
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().