Optimal synchronization in small-world biological neural networks with time-varying weights
Hongyu Zheng and
Xiaoshu Luo
Chaos, Solitons & Fractals, 2009, vol. 41, issue 1, 516-520
Abstract:
In this paper, a new model of small-world biological neural networks based on biophysical Hodgkin–Huxley neurons with time-varying weights is proposed. Then the synchronization phenomenon of small-world biological neural networks evoked by the learning rate is studied. The study shows that there exists an optimal synchronization state by changing the learning rate.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908000817
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:1:p:516-520
DOI: 10.1016/j.chaos.2008.02.022
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().