EconPapers    
Economics at your fingertips  
 

Multisymplectic integration of N-coupled nonlinear Schrödinger equation with destabilized periodic wave solutions

Ayhan Aydın

Chaos, Solitons & Fractals, 2009, vol. 41, issue 2, 735-751

Abstract: N-coupled nonlinear Schrödinger equation (N-CNLS) is shown to be in multisymplectic form. 3-CNLS equation is studied for analytical and numerical purposes. A new six-point scheme which is equivalent to the multisymplectic Preissman scheme is derived for 3-CNLS equation. A new periodic wave solution is obtained and its stability analysis is discussed. 3-CNLS equation is integrated for destabilized periodic solutions both for integrable and non-integrable cases by multisymplectic six-point scheme. Different kinds of evolutions are observed for different parameters and coefficients of the system. Numerical results show that, the multisymplectic six-point scheme has excellent local and global conservation properties in long-time computation.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908001409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:2:p:735-751

DOI: 10.1016/j.chaos.2008.03.011

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:41:y:2009:i:2:p:735-751