Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems
G.P. Berman,
F. Borgonovi and
D.A.R. Dalvit
Chaos, Solitons & Fractals, 2009, vol. 41, issue 2, 919-929
Abstract:
We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular “quantum” perturbation for observables in some “mesoscopic” region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose–Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular, we show that for Bose–Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion.
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790800194X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:2:p:919-929
DOI: 10.1016/j.chaos.2008.04.022
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().