Turbulence revisited
Michail Zak
Chaos, Solitons & Fractals, 2009, vol. 41, issue 3, 1136-1149
Abstract:
A new approach to turbulence based upon the Stabilization Principle is introduced. Onset of turbulence is interpreted as loss of stability of solutions to the Navier–Stokes equations in the class of differentiable functions. Developed turbulence is considered as postinstability motion in the class of non-differentiable functions. A non-linear version of the Liouville equation is proposed for describing postinstability motions of dynamical systems with exponential divergence of trajectories such as those leading to chaos and turbulence. As a result, velocities are represented by a set of stochastic invariants found from the Stabilization Principle.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908002300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:3:p:1136-1149
DOI: 10.1016/j.chaos.2008.04.059
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().