Learning FCM by chaotic simulated annealing
Somayeh Alizadeh and
Mehdi Ghazanfari
Chaos, Solitons & Fractals, 2009, vol. 41, issue 3, 1182-1190
Abstract:
Fuzzy cognitive map (FCM) is a directed graph, which shows the relations between essential components in complex systems. It is a very convenient, simple, and powerful tool, which is used in numerous areas of application. Experts who are familiar with the system components and their relations can generate a related FCM. There is a big gap when human experts cannot produce FCM or even there is no expert to produce the related FCM. Therefore, a new mechanism must be used to bridge this gap. In this paper, a novel learning method is proposed to construct FCM by using Chaotic simulated annealing (CSA). The proposed method not only is able to construct FCM graph topology but also is able to extract the weight of the edges from input historical data. The efficiency of the proposed method is shown via comparison of its results of some numerical examples with those of Simulated annealing (SA) method.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908002373
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:3:p:1182-1190
DOI: 10.1016/j.chaos.2008.04.058
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().