EconPapers    
Economics at your fingertips  
 

A new interpretation of chaos

Chuanwen Luo, Gang Wang, Chuncheng Wang and Junjie Wei

Chaos, Solitons & Fractals, 2009, vol. 41, issue 3, 1294-1300

Abstract: The concepts of uniform index and expectation uniform index are two mathematical descriptions of the uniformity and the mean uniformity of a finite set in a polyhedron. The concepts of instantaneous chaometry (ICM) and k step chaometry (k SCM) are introduced in order to apply the method in statistics for studying the nonlinear difference equations. It is found that k step chaometry is an indirect estimation of the expectation uniform index. The simulation illustrate that the expectation uniform index for the Lorenz System is increasing linearly, but increasing nonlinearly for the Chen’s System with parameter b. In other words, the orbits for each system become more and more uniform with parameter b increasing. Finally, a conjecture is also brought forward, which implies that chaos can be interpreted by its orbit’s mean uniformity described by the expectation uniform index and indirectly estimated by k SCM. The k SCM of the heart rate showes the feeble and old process of the heart.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908002518
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:3:p:1294-1300

DOI: 10.1016/j.chaos.2008.05.010

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:41:y:2009:i:3:p:1294-1300